Ting Wang NEC Labs America

Ting Wang

Department Head

Optical Networking & Sensing

Posts

QoT-Driven Control and Optimization in Fiber-Optic WDM Network Systems

This paper outlines QoT-driven optimization strategies in coherent fiber-optic WDM networks, addressing distinct transmission scenarios, QoT metrics, control-plane methodologies, and emerging trends to enhance network reliability, flexibility and capacity.

Robust Phase Noise Power Spectral Density Estimation Using Multi-Laser Interferometry

We jointly estimate the phase noise power spectral densities of multiple lasers using interferometry between different combinations of laser pairs. We demonstrate a beat-frequency trackingmethod that allows under-sampling of interferometric products without phase jumps.

Toward Intelligent and Efficient Optical Networks: Performance Modeling, Co-existence, and Field Trials

Optical transmission networks require intelligent traffic adaptation and efficient spectrum usage. We present scalable machine learning (ML) methods for network performance modeling, andfield trials of distributed fiber sensing and classic optical network traffic coexistence.

Resilient DFOS Placement Strategy for Power Grid Monitoring: Integrating Fiber and Power Network Dependencies

We propose a novel Distributed Fiber Optic Sensing (DFOS) placement strategy tailored to the evolving needs of modern power grids, where fiber cables serve dual purposes: communication and real-time sensing. Our approach integrates a heuristic algorithm, PURE (Power Source-aware Route Exploration), with Integer Linear Programming (ILP) to optimize DFOS placement while addressing power supply constraints. The strategy ensures resilient monitoring across diverse grid scenarios by prioritizing observability during outages and leveraging advancements in fiber infrastructure deployment. Case studies demonstrate the effectiveness of our methodology in maintaining power grid resilience while minimizing deployment costs.

Detection of Waves and Sea-Surface Vessels via Time Domain Only Analysis of Underwater DAS Data

A 100-meter-long fiber optic cable was installed at the bottom of a water tank at the Davidson Laboratory, together with a hydrophone for reference. The water tank is approximately 2.5 meters deep and 95 meters long; the tank also employs a 6-paddle wavemaker which can generate programmable surface waves. A 155-cm-long model boat weighing 6.5 kilograms was automatically dragged on the surface of the tank via an electrical towing mechanism. The movement of the model boat along the fiber cable and over the hydrophone was recorded using a commercially available NEC Distributed Acoustic Sensing (DAS) system and simultaneously by a hydrophone. The experiments were repeated with and without the artificially generated surface waves. The data obtained from the hydrophone and the DAS system are presented and compared. The results show the compatibility between the DAS data and the hydrophone data. More importantly, ourresults show that it is possible to measure the surface waves and to detect a surface vessel approaching the sensor by only using the time domain analysis in terms of detected total energy over time.

Optical Flow Processing for Chirp-Pulse Coherent OTDR

We propose a novel optical flow processing technique for distributed temperature and strain sensing with the chirped-pulse coherent OTDR. Unlike conventional 1-dimensional cross-correlation methods, the technique treats the 2-dimensional waterfall data as sequential video frames, estimating local shifts through optical flow. The weighted least square approach with adaptive window size enables pixel-level optical flow calculation, providing accurate local shifts via accumulative tracks with enhanced spatial resolution. Preliminary experimental results over 20km fiber demonstrate its effectiveness for dynamic temperature and strain sensing, addressing limitations of traditional methods and improving sensing capabilities.

Multiple Sensor-head Phase-sensitive Optical Time-domain Laser Vibrometer

We propose a hybrid remote and distributed vibration sensing system based on phase-sensitive optical time-domain reflectometry with collimator-based sensor heads. We demonstrate dual-laser vibrometers that detects nm-scale displacements of remote targets.

Text-guided Device-realistic Sound Generation for Fiber-based Sound Event Classification

Recent advancements in unique acoustic sensing devices and large-scale audio recognition models have unlocked new possibilities for environmental sound monitoring and detection. However, applying pretrained models to non-conventional acoustic sensors results in performance degradation due to domain shifts, caused by differences in frequency response and noise characteristics from the original training data. In this study, we introduce a text-guided framework for generating new datasets to retrain models specifically for these non-conventional sensors efficiently. Our approach integrates text-conditional audio generative models with two additional steps: (1) selecting audio samples based on text input to match the desired sounds, and (2) applying domain transfer techniques using recorded impulse responses and background noise to simulate the characteristics of the sensors. We demonstrate this process by generating emulated signals for fiber-optic Distributed Acoustic Sensors (DAS), creating datasets similar to the recorded ESC-50 dataset. The generated signals are then used to train a classifier, which outperforms few-shot learning approaches in environmental sound classification.

1.2 Tb/s/l Real Time Mode Division Multiplexing Free Space Optical Communication with Commercial 400G Open and Disaggregated Transponders

We experimentally demonstrate real time mode division multiplexing free space optical communication with commercial 400G open and disaggregated transponders. As proof of concept,using HG00, HG10, and HG01 modes, we transmit 1.2 Tb/s/l (3´1l´400Gb/s) error free.

DiffOptics: A Conditional Diffusion Model for Fiber Optics Sensing Data Imputation

We present a generative AI framework based on a conditional diffusion model for distributed acoustic sensing (DAS) data imputation. The proposed DiffOptics model generates high-quality DAS data of various acoustic events using telecom fiber cables.