Ting Wang NEC Labs America

Ting Wang

Department Head

Optical Networking & Sensing

Posts

High-Sensitivity Forward-Transmission Vibration Sensing for Real-World Event Detection in Urban Fiber Networks

Publication Date: 4/3/2025 Event: OFC 2025 Reference: Th4C.2: 1-3, 2025 Authors: Jian Fang, NEC Laboratories America, Inc.; Ming-Fang Huang, NEC Laboratories America, Inc.; Scott Kotrla, Verizon; Tiejun J. Xia, Verizon; Glenn A. Wellbrock, Verizon; Jeffrey A Mundt, Verizon; Ting Wang, NEC Laboratories America, Inc.; Yoshiaki Aono, NEC Corporation Abstract: We demonstrated a high-sensitivity forwarding-transmission vibration […]

1.2 Tb/s/l Real Time Mode Division Multiplexing Free Space Optical Communication with Commercial 400G Open and Disaggregated Transponders

We experimentally demonstrate real time mode division multiplexing free space optical communication with commercial 400G open and disaggregated transponders. As proof of concept,using HG00, HG10, and HG01 modes, we transmit 1.2 Tb/s/l (3´1l´400Gb/s) error free.

DiffOptics: A Conditional Diffusion Model for Fiber Optics Sensing Data Imputation

We present a generative AI framework based on a conditional diffusion model for distributed acoustic sensing (DAS) data imputation. The proposed DiffOptics model generates high-quality DAS data of various acoustic events using telecom fiber cables.

Dual Privacy Protection for Distributed Fiber Sensing with Disaggregated Inference and Fine-tuning of Memory-Augmented Networks

We propose a memory-augmented model architecture with disaggregated computation infrastructure for fiber sensing event recognition. By leveraging geo-distributed computingresources in optical networks, this approach empowers end-users to customize models while ensuring dual privacy protection.

Field Tests of AI-Driven Road Deformation Detection Leveraging Ambient Noise over Deployed Fiber Networks

This study demonstrates an AI-driven method for detecting road deformations using Distributed Acoustic Sensing (DAS) over existing telecom fiber networks. Utilizingambient traffic noise, it enables real-time, long-term, and scalable monitoring for road safety.

Field Trials of Manhole Localization and Condition Diagnostics by Using Ambient Noise and Temperature Data with AI in a Real-Time Integrated Fiber Sensing System

Field trials of ambient noise-based automated methods for manhole localization and condition diagnostics using a real-time DAS/DTS integrated system were conducted. Crossreferencingmultiple sensing data resulted in a 94.7% detection rate and enhanced anomaly identification.

400-Gb/s mode division multiplexing-based bidirectional free space optical communication in real-time with commercial transponders

In this work, for the first time, we experimentally demonstrate mode division multiplexing-based bidirectional free space optical communication in real-time using commercial transponders. As proof of concept, via bidirectional pairs of Hermite-Gaussian modes (HG00, HG10, and HG01), using a Telecom Infra Project Phoenix compliant commercial 400G transponder, 400-Gb/s data signals (56-Gbaud, DP-16QAM) are bidirectionally transmitted error free, i.e., with less than 1e-2 pre-FEC BERs, over approximately 1-m of free space

Free-Space Optical Sensing Using Vector Beam Spectra

Vector beams are spatial modes that have spatially inhomogeneous states of polarization. Any light beam is a linear combination of vector beams, the coefficients of which comprise a vector beam “spectrum.” In this work, through numerical calculations, a novel method of free-space optical sensing is demonstrated using vector beam spectra, which are shown to be experimentally measurable via Stokes polarimetry. As proof of concept, vector beam spectra are numerically calculated for various beams and beam obstructions.

Field Verification of Fault Localization with Integrated Physical-Parameter-Aware Methodology

We report the first field verification of fault localization in an optical line system (OLS) by integrating digital longitudinal monitoring and OLS calibration, highlighting changes in physical metrics and parameters. Use cases shown are degradation of a fiber span loss and optical amplifier noise figure.

Characterization and Modeling of the Noise Figure Ripple in a Dual-Stage EDFA

The noise figure ripple of a dual-stage EDFA is studied starting from experimental measurements under full spectral load conditions and defining device characteristics. Asemi-analytical model is then proposed showing 0.1 dB standard deviation on the error distribution in all cases of operation.