Unsupervised Domain Adaptation (UDA) is a machine learning paradigm that addresses the challenge of adapting a model trained on a source domain to perform well on a different, unlabeled target domain. In other words, it focuses on transferring knowledge learned from a labeled source domain to an unlabeled target domain, where the data distribution may differ.

Posts

Beyond Communication: Telecom Fiber Networks for Rain Detection and Classification

We present the field trial of an innovative neural network and DAS-based technique, employing a pre-trained CNN fine-tuning strategy for effective rain detection and classification within two practical scenarios.

Adaptation Across Extreme Variations using Unlabeled Bridges

Adaptation Across Extreme Variations using Unlabeled Bridges We tackle an unsupervised domain adaptation problem for which the domain discrepancy between labeled source and unlabeled target domains is large, due to many factors of inter- and intra-domain variation. While deep domain adaptation methods have been realized by reducing the domain discrepancy, these are difficult to apply when domains are significantly different. We propose to decompose domain discrepancy into multiple but smaller, and thus easier to minimize, discrepancies by introducing unlabeled bridging domains that connect the source and target domains. We realize our proposed approach through an extension of the domain adversarial neural network with multiple discriminators, each of which accounts for reducing discrepancies between unlabeled (bridge, target) domains and a mix of all precedent domains including source. We validate the effectiveness of our method on several adaptation tasks including object recognition and semantic segmentation.

Gotta Adapt ’Em All: Joint Pixel and Feature-Level Domain Adaptation for Recognition in the Wild

Gotta Adapt ’Em All: Joint Pixel and Feature-Level Domain Adaptation for Recognition in the Wild Recent developments in deep domain adaptation have allowed knowledge transfer from a labeled source domain to an unlabeled target domain at the level of intermediate features or input pixels. We propose that advantages may be derived by combining them, in the form of different insights that lead to a novel design and complementary properties that result in better performance. At the feature level, inspired by insights from semi-supervised learning, we propose a classification-aware domain adversarial neural network that brings target examples into more classifiable regions of source domain. Next, we posit that computer vision insights are more amenable to injection at the pixel level. In particular, we use 3D geometry and image synthesis based on a generalized appearance flow to preserve identity across pose transformations, while using an attribute-conditioned CycleGAN to translate a single source into multiple target images that differ in lower-level properties such as lighting. Besides standard UDA benchmark, we validate on a novel and apt problem of car recognition in unlabeled surveillance images using labeled images from the web, handling explicitly specified, nameable factors of variation through pixel-level and implicit, unspecified factors through feature-level adaptation.

Unsupervised Cross Domain Distance Metric Adaptation with Feature Transfer Network

Unsupervised Cross Domain Distance Metric Adaptation with Feature Transfer Network Unsupervised domain adaptation is an attractive avenue to enhance the performance of deep neural networks in a target domain, using labels only from a source domain. However, two predominant methods along this line, namely, domain divergence reduction learning and semi-supervised learning, are not readily applicable when the source and target domains do not share a common label space. This paper addresses the above scenario by learning a representation space that retains discriminative power on both the (labeled) source and (unlabeled) target domains while keeping the representations for the two domains well-separated. Inspired by a theoretical error bound on the target domain, we first reformulate the disjoint classification, where the source and target domains correspond to non-overlapping class labels, to a verification task. To handle both within-domain and cross-domain verification tasks, we propose a Feature Transfer Network (FTN) that separates the target features from the source features while simultaneously aligning the target features with a transformed source feature space. Moreover, we present a non-parametric variation of multi-class entropy minimization loss to further boost the discriminative power of FTNs on the target domain. In experiments, we demonstrate the effectiveness of FTNs through state-of-the-art performances on a cross-ethnicity face recognition problem.

Joint Pixel and Feature-level Domain Adaptation in the Wild

Joint Pixel and Feature-level Domain Adaptation in the Wild Recent developments in deep domain adaptation have allowed knowledge transfer from a labeled source domain to an unlabeled target domain at the level of intermediate features or input pixels. We propose that advantages may be derived by combining them, in the form of different insights that lead to a novel design and complementary properties that result in better performance. At the feature level, inspired by insights from semi-supervised learning in a domain adversarial neural network, we propose a novel regularization in the form of domain adversarial entropy minimization. Next, we posit that insights from computer vision are more amenable to injection at the pixel level and specifically address the key challenge of adaptation across different semantic levels. In particular, we use 3D geometry and image synthetization based on a generalized appearance flow to preserve identity across higher-level pose transformations, while using an attribute-conditioned CycleGAN to translate a single source into multiple target images that differ in lower-level properties such as lighting. We validate on a novel problem of car recognition in unlabeled surveillance images using labeled images from the web, handling explicitly specified, nameable factors of variation through pixel-level and implicit, unspecified factors through feature-level adaptation. Extensive experiments achieve state-of-the-art results, demonstrating the effectiveness of complementing feature and pixel-level information via our proposed domain adaptation method.