Yue-Kai Huang NEC Labs America

Yue-Kai Huang is a Senior Researcher in the Optical Networking and Sensing Department at NEC Laboratories America in Princeton, NJ. He received his MS in Electro-Optical Engineering and his BS in Electrical and Electronics Engineering from National Taiwan University. He received his PhD in Electrical and Electronics Engineering from Princeton University, where his doctoral research focused on photonics and high-speed optical communication systems.

At NEC, Dr. Huang’s work advances the field of optical networking and fiber-based sensing systems. His research includes long-distance fiber transmission, optical/RF frontend designs for high-capacity systems, system design for distributed fiber sensing, and optical computation techniques using high-speed photonics. His work on intelligent optical sensor networks, in particular, uses fiber not only as a communication medium but also as a pervasive sensing platform. These innovations enable real-time monitoring of critical infrastructures such as transportation systems, utilities, and data centers. By combining fundamental photonics research with applied system development, Dr. Huang helps drive NEC’s mission to create more resilient, adaptive, and efficient network and sensing solutions.

His contributions result in many of NEC’s products in coherent 100G~400G and DAS sensing solutions and support the integration of advanced optical technologies into large-scale environments, bridging the gap between physical infrastructure and digital intelligence to improve safety, performance, and situational awareness.

Posts

Multi-Span Optical Power Spectrum Prediction using ML-based EDFA Models and Cascaded Learning

We implement a cascaded learning framework using component-level EDFA models for optical power spectrum prediction in multi-span networks, achieving a mean absolute error of 0.17 dB across 6 spans and 12 EDFAs with only one-shot measurement.

Modeling the Input Power Dependency in Transceiver BER-ONSR for QoT Estimation

We propose a method to estimate the input power dependency of the transceiver BER-OSNR characteristic. Experiments using commercial transceivers show that estimation error in Q-factor is less than 0.2 dB.

Inline Fiber Type Identification using In-Service Brillouin Optical Time Domain Analysis

We proposed the use of BOTDA as a monitoring tool to identify fiber types present in deployed hybrid-span fiber cables, to assist in network planning, setting optimal launch powers, and selecting correct modulation formats.

4D Optical Link Tomography: First Field Demonstration of Autonomous Transponder Capable of Distance, Time, Frequency, and Polarization-Resolved Monitoring

We report the first field demonstration of 4D link tomography using a commercial transponder, which offers distance, time, frequency, and polarization-resolved monitoring. This scheme enables autonomous transponders that identify locations of multiple QoT degradation causes.

Field Trial of Coexistence and Simultaneous Switching of Real-Time Fiber Sensing and Coherent 400 GbE in a Dense Urban Environment

Recent advances in optical fiber sensing have enabled telecom network operators to monitor their fiber infrastructure while generating new revenue in various application scenarios, including data center interconnect, public safety, smart cities, and seismic monitoring. However, given the high utilization of fiber networks for data transmission, it is undesirable to allocate dedicated fiber strands solely for sensing purposes. Therefore, it is crucial to ensure the reliable coexistence of fiber sensing and communication signals that co-propagate on the same fiber. In this paper, we conduct field trials in a reconfigurable optical add-drop multiplexer (ROADM) network enabled by the PAWR COSMOS testbed, utilizing metro area fibers in Manhattan, New York City. We verify the coexistence of real-time constant-amplitude distributed acoustic sensing (DAS), coherent 400 GbE, and analog radio-over-fiber (ARoF) signals. Measurement results obtained from the field trial demonstrate that the quality of transmission (QoT) of the coherent 400 GbE signal remains unaffected during co-propagation with DAS and ARoF signals in adjacent dense wavelength-division multiplexing (DWDM) channels. In addition, we present a use case of this coexistence system supporting preemptive DAS-informed optical path switching before link failure.

Fast WDM Provisioning With Minimum Probe Signals: The First Field Experiments For DC Exchanges

There are increasing requirements for data center interconnection (DCI) services, which use fiber to connect any DC distributed in a metro area and quickly establish high-capacity optical paths between cloud services and mobile edge computing and the users. In such networks, coherent transceivers with various optical frequency ranges, modulators, and modulation formats installed at each connection point must be used to meet service requirements such as fast-varying traffic requests between user computing resources. This requires technologyand architectures that enable users and DCI operators to cooperate to achieve fast provisioning of WDM links and flexible route switching in a short time, independent of the transceiver’s implementation and characteristics. We propose an approach to estimate the end-to-end (EtE) generalized signal-to-noise ratio (GSNR) accurately in a short time, not by measuring the GSNR at the operational route and wavelength for the EtE optical path but by simply applying a quality of transmission probe channel link by link, at a wavelength/modulation-formatconvenient for measurement. Assuming connections between transceivers of various frequency ranges, modulators, and modulation formats, we propose a device software architecture in which the DCI operator optimizes the transmission mode between user transceivers with high accuracy using only common parameters such as the bit error rate. In this paper, we first implement software libraries for fast WDM provisioning and experimentally build different routes to verify the accuracy of this approach. For the operational EtE GSNR measurements, theaccuracy estimated from the sum of the measurements for each link was 0.6 dB, and the wavelength-dependent error was about 0.2 dB. Then, using field fibers deployed in the NSF COSMOS testbed, a Linux-based transmission device software architecture, and transceivers with different optical frequency ranges, modulators, andmodulation formats, the fast WDM provisioning of an optical path was completed within 6 min.

Long Reach Fibre Optic Distributed Acoustic Sensing using Enhanced Scattering Fibre

We report significant noise reduction in distributed acoustic sensing (DAS) link using enhanced-scatter fibre (ESF). The longest reach of 195km DAS link without inline amplifications is also demonstrated. We further present demonstration of simultaneous fibre-optic sensing and 400Gb/s data transmissions over 195km fibre using ESF.

First Field Demonstration of Automatic WDM Optical Path Provisioning over Alien Access Links for Data Center Exchange

We demonstrated under six minutes automatic provisioning of optical paths over field- deployed alien access links and WDM carrier links using commercial-grade ROADMs, whitebox mux-ponders, and multi-vendor transceivers. With channel probing, transfer learning, and Gaussian noise model, we achieved an estimation error (Q-factor) below 0.7 dB

Field Trial of Coexistence and Simultaneous Switching of Real-time Fiber Sensing and 400GbE Supporting DCI and 5G Mobile Services

Coexistence of real-time constant-amplitude distributed acoustic sensing (DAS) and 400GbE signals is verified by field trial over metro fibers, demonstrating no QoT impact during co-propagation and supporting preemptive DAS-informed optical path switching before link failure

DAS over 1,007-km Hybrid Link with 10-Tb/s DP-16QAM Co-propagation using Frequency-Diverse Chirped Pulses

We report the first distributed acoustic sensing (DAS) experiment with over >1,000 km reach on a hybrid link comprising of a mixture of field and lab fibers with bi-directional inline Raman amplification after each span. We used 20× frequency-diversity chirped-pulses for the probe signal,and recovered the Rayleigh backscatter using a coherent receiver with correlation detection and diversity combining. A measurand resolution of ∼100 pϵ/√ Hz at a gauge length of 20 meters achieved in the offline experiment. We also demonstrate the first real-time FPGA implementation of chirped-pulse DAS without frequency diversity over a range of 210 km.