Posts

Camouflaged Object Detection with Feature Decomposition and Edge Reconstruction

Camouflaged Object Detection with Feature Decomposition and Edge Reconstruction Camouflaged object detection (COD) aims to address the tough issue of identifying camouflaged objects visually blended into the surrounding backgrounds. COD is a challenging task due to the intrinsic similarity of camouflaged objects with the background, as well as their ambiguous boundaries. Existing approaches to this problem have developed various techniques to mimic the human visual system. Albeit effective in many cases, these methods still struggle when camouflaged objects are so deceptive to the vision system. In this paper, we propose the FEature Decomposition and Edge Reconstruction (FEDER) model for COD. The FEDER model addresses the intrinsic similarity of foreground and background by decomposing the features into different frequency bands using learnable wavelets. It then focuses on the most informative bands to mine subtle cues that differentiate foreground and background. To achieve this, a frequency attention module and a guidance-based feature aggregation module are developed. To combat the ambiguous boundary problem, we propose to learn an auxiliary edge reconstruction task alongside the COD task. We design an ordinary differential equation-inspired edge reconstruction module that generates exact edges. By learning the auxiliary task in conjunction with the COD task, the FEDER model can generate precise prediction maps with accurate object boundaries. Experiments show that our FEDER model significantly outperforms state-of-the-art methods with cheaper computational and memory costs.

Unsupervised Anomaly Detection with Self-Training and Knowledge Distillation

Unsupervised Anomaly Detection with Self-Training and Knowledge Distillation Anomaly Detection (AD) aims to find defective patterns or abnormal samples among data, and has been a hot research topic due to various real-world applications. While various AD methods have been proposed, most of them assume the availability of a clean (anomaly-free) training set, which however may be hard to guarantee in many real-world industry applications. This motivates us to investigate Unsupervised Anomaly Detection (UAD) in which the training set includes both normal and abnormal samples. In this paper, we address the UAD problem by proposing a Self-Training and Knowledge Distillation (STKD) model. STKD combats anomalies in the training set by iteratively alternating between excluding samples of high anomaly probabilities and training the model with the purified training set. Despite that the model is trained with a cleaner training set, the inevitably existing anomalies may still cause negative impact. STKD alleviates this by regularizing the model to respond similarly to a teacher model which has not been trained with noisy data. Experiments show that STKD consistently produces more robust performance with different levels of anomalies.