Posts

Multi-source Inductive Knowledge Graph Transfer

Multi-source Inductive Knowledge Graph Transfer Large-scale information systems, such as knowledge graphs (KGs), enterprise system networks, often exhibit dynamic and complex activities. Recent research has shown that formalizing these information systems as graphs can effectively characterize the entities (nodes) and their relationships (edges). Transferring knowledge from existing well-curated source graphs can help construct the target graph of newly-deployed systems faster and better which no doubt will benefit downstream tasks such as link prediction and anomaly detection for new systems. However, current graph transferring methods are either based on a single source, which does not sufficiently consider multiple available sources, or not selectively learns from these sources. In this paper, we propose MSGT-GNN, a graph knowledge transfer model for efficient graph link prediction from multiple source graphs. MSGT-GNN consists of two components: the Intra-Graph Encoder, which embeds latent graph features of system entities into vectors, and the graph transferor, which utilizes graph attention mechanism to learn and optimize the embeddings of corresponding entities from multiple source graphs, in both node level and graph level. Experimental results on multiple real-world datasets from various domains show that MSGT-GNN outperforms other baseline approaches in the link prediction and demonstrate the merit of attentive graph knowledge transfer and the effectiveness of MSGT-GNN.

This is Why We Can’t Cache Nice Things: Lightning-Fast Threat Hunting using Suspicion-Based Hierarchical Storage

This is Why We Can’t Cache Nice Things: Lightning-Fast Threat Hunting using Suspicion-Based Hierarchical Storage Recent advances in the causal analysis can accelerate incident response time, but only after a causal graph of the attack has been constructed. Unfortunately, existing causal graph generation techniques are mainly offline and may take hours or days to respond to investigator queries, creating greater opportunity for attackers to hide their attack footprint, gain persistency, and propagate to other machines. To address that limitation, we present Swift, a threat investigation system that provides high-throughput causality tracking and real-time causal graph generation capabilities. We design an in-memory graph database that enables space-efficient graph storage and online causality tracking with minimal disk operations. We propose a hierarchical storage system that keeps forensically-relevant part of the causal graph in main memory while evicting rest to disk. To identify the causal graph that is likely to be relevant during the investigation, we design an asynchronous cache eviction policy that calculates the most suspicious part of the causal graph and caches only that part in the main memory. We evaluated Swift on a real-world enterprise to demonstrate how our system scales to process typical event loads and how it responds to forensic queries when security alerts occur. Results show that Swift is scalable, modular, and answers forensic queries in real-time even when analyzing audit logs containing tens of millions of events.

Anomalous Event Sequence Detection

Anomalous Event Sequence Detection Anomaly detection has been widely applied in modern data-driven security applications to detect abnormal events/entities that deviate from the majority. However, less work has been done in terms of detecting suspicious event sequences/paths, which are better discriminators than single events/entities for distinguishing normal and abnormal behaviors in complex systems such as cyber-physical systems. A key and challenging step in this endeavor is how to discover those abnormal event sequences from millions of system event records in an efficient and accurate way. To address this issue, we propose NINA, a network diffusion-based algorithm for identifying anomalous event sequences. Experimental results on both static and streaming data show that NINA is efficient (processes about 2 million records per minute) and accurate.

APTrace: A Responsive System for Agile Enterprise Level Causality Analysis

APTrace: A Responsive System for Agile Enterprise Level Causality Analysis While backtracking analysis has been successful in assisting the investigation of complex security attacks, it faces a critical dependency explosion problem. To address this problem, security analysts currently need to tune backtracking analysis manually with different case-specific heuristics. However, existing systems fail to fulfill two important system requirements to achieve effective backtracking analysis. First, there need flexible abstractions to express various types of heuristics. Second, the system needs to be responsive in providing updates so that the progress of backtracking analysis can be frequently inspected, which typically involves multiple rounds of manual tuning. In this paper, we propose a novel system, APTrace, to meet both of the above requirements. As we demonstrate in the evaluation, security analysts can effectively express heuristics to reduce more than 99.5% of irrelevant events in the backtracking analysis of real-world attack cases. To improve the responsiveness of backtracking analysis, we present a novel execution-window partitioning algorithm that significantly reduces the waiting time between two consecutive updates (especially, 57 times reduction for the top 1% waiting time).

A Query System for Efficiently Investigating Complex Attack Behaviors for Enterprise Security

A Query System for Efficiently Investigating Complex Attack Behaviors for Enterprise Security The need for countering Advanced Persistent Threat (APT) attacks has led to the solutions that ubiquitously monitor system activities in each enterprise host, and perform timely attack investigation over the monitoring data for uncovering the attack sequence. However, existing general-purpose query systems lack explicit language constructs for expressing key properties of major attack behaviors, and their semantics-agnostic design often produces inefficient execution plans for queries. To address these limitations, we build Aiql, a novel query system that is designed with novel types of domain-specific optimizations to enable efficient attack investigation. Aiql provides (1) a domain-specific data model and storage for storing the massive system monitoring data, (2) a domain-specific query language, Attack Investigation Query Language (Aiql) that integrates critical primitives for expressing major attack behaviors, and (3) an optimized query engine based on the characteristics of the data and the semantics of the query to efficiently schedule the execution. We have deployed Aiql in NEC Labs America comprising 150 hosts. In our demo, we aim to show the complete usage scenario of Aiql by (1) performing an APT attack in a controlled environment, and (2) using Aiql to investigate such attack by querying the collected system monitoring data that contains the attack traces. The audience will have the option to perform the APT attack themselves under our guidance, and interact with the system and investigate the attack via issuing queries and checking the query results through our web UI.

Heterogeneous Graph Matching Networks for Unknown Malware Detection

Heterogeneous Graph Matching Networks for Unknown Malware Detection Information systems have widely been the target of malware attacks. Traditional signature-based malicious program detection algorithms can only detect known malware and are prone to evasion techniques such as binary obfuscation, while behavior-based approaches highly rely on the malware training samples and incur prohibitively high training cost. To address the limitations of existing techniques, we propose MatchGNet, a heterogeneous Graph Matching Network model to learn the graph representation and similarity metric simultaneously based on the invariant graph modeling of the program’s execution behaviors. We conduct a systematic evaluation of our model and show that it is accurate in detecting malicious program behavior and can help detect malware attacks with less false positives. MatchGNet outperforms the state-of-the-art algorithms in malware detection by generating 50% less false positives while keeping zero false negatives.

Attentional Heterogeneous Graph Neural Network: Application to Program Reidentification

Attentional Heterogeneous Graph Neural Network:Application to Program Reidentfication Program or process is an integral part of almost every IT/OT system. Can we trust the identity/ID (e.g., executable name) of the program? To avoid detection, malware may disguise itself using the ID of a legitimate program, and a system tool (e.g., PowerShell) used by the attackers may have the fake ID of another common software, which is less sensitive. However, existing intrusion detection techniques often overlook this critical program reidentification problem (i.e., checking the program’s identity). In this paper, we propose an attentional heterogeneous graph neural network model (DeepHGNN) to verify the program’s identity based on its system behaviors. The key idea is to leverage the representation learning of the heterogeneous program behavior graph to guide the reidentification process. We formulate the program reidentification as a graph classification problem and develop an effective attentional heterogeneous graph embedding algorithm to solve it. Extensive experiments — using real-world enterprise monitoring data and real attacks — demonstrate the effectiveness of DeepHGNN across multiple popular metrics and the robustness to the normal dynamic changes like program version upgrades.

PoLPer: Process-Aware Restriction of Over-Privileged Setuid Calls in Legacy Applications

PoLPer: Process-Aware Restriction of Over-Privileged Setuid Calls in Legacy Applications Setuid system calls enable critical functions such as user authentications and modular privileged components. Such operations must only be executed after careful validation. However, current systems do not perform rigorous checks, allowing exploitation of privileges through memory corruption vulnerabilities in privileged programs. As a solution, understanding which setuid system calls can be invoked in what context of a process allows precise enforcement of least privileges. We propose a novel comprehensive method to systematically extract and enforce least privilege of setuid system calls to prevent misuse. Our approach learns the required process contexts of setuid system calls along multiple dimensions: process hierarchy, call stack, and parameter in a process-aware way. Every setuid system call is then restricted to the per-process context by our kernel-level context enforcer. Previous approaches without process-awareness are too coarse-grained to control setuid system calls, resulting in over-privilege. Our method reduces available privileges even for identical code depending on whether it is run by a parent or a child process. We present our prototype called PoLPer which systematically discovers only required setuid system calls and effectively prevents real-world exploits targeting vulnerabilities of the setuid family of system calls in popular desktop and server software at near zero overhead.

Countering Malicious Processes with Process-DNS Association

Countering Malicious Processes with Process-DNS Association Modern malware and cyber attacks depend heavily on DNS services to make their campaigns reliable and difficult to track. Monitoring network DNS activities and blocking suspicious domains have been proven an effective technique in countering such attacks. However, recent successful campaigns reveal that at- tackers adapt by using seemingly benign domains and public web storage services to hide malicious activity. Also, the recent support for encrypted DNS queries provides attacker easier means to hide malicious traffic from network-based DNS monitoring.We propose PDNS, an end-point DNS monitoring system based on DNS sensor deployed at each host in a network, along with a centralized backend analysis server. To detect such attacks, PDNS expands the monitored DNS activity context and examines process context which triggered that activity. Specifically, each deployed PDNS sensor matches domain name and the IP address related to the DNS query with process ID, binary signature, loaded DLLs, and code signing information of the program that initiated it. We evaluate PDNS on a DNS activity dataset collected from 126 enterprise hosts and with data from multiple malware sources. Using ML Classifiers including DNN, our results outperform most previous works with high detection accuracy: a true positive rate at 98.55% and a low false positive rate at 0.03%.

NODOZE: Combatting Threat Alert Fatigue with Automated Provenance Triage

NODOZE: Combatting Threat Alert Fatigue with Automated Provenance Triage Large enterprises are increasingly relying on threat detection softwares (e.g., Intrusion Detection Systems) to allow them to spot suspicious activities. These softwares generate alerts which must be investigated by cyber analysts to figure out if they are true attacks. Unfortunately, in practice, there are more alerts than cyber analysts can properly investigate. This leads to a “threat alert fatigue” or information overload problem where cyber analysts miss true attack alerts in the noise of false alarms.In this paper, we present NoDoze to combat this challenge using contextual and historical information of generated threat alert in an enterprise. NoDoze first generates a causal dependency graph of an alert event. Then, it assigns an anomaly score to each event in the dependency graph based on the frequency with which related events have happened before in the enterprise. NoDoze then propagates those scores along the edges of the graph using a novel network diffusion algorithm and generates a subgraph with an aggregate anomaly score which is used to triage alerts. Evaluation on our dataset of 364 threat alerts shows that NoDoze decreases the volume of false alarms by 86%, saving more than 90 hours of analysts’ time, which was required to investigate those false alarms. Furthermore, NoDoze generated dependency graphs of true alerts are 2 orders of magnitude smaller than those generated by traditional tools without sacrificing the vital information needed for the investigation. Our system has a low average runtime overhead and can be deployed with any threat detection software.