Zhichun Li works at Stellar Cyber.

Posts

Behavior-based Community Detection: Application to Host Assessment in Enterprise Information Networks

Behavior-based Community Detection: Application to Host Assessment in Enterprise Information Networks Community detection in complex networks is a fundamental problem that attracts much attention across various disciplines. Previous studies have been mostly focusing on external connections between nodes (i.e., topology structure) in the network whereas largely ignoring internal intricacies (i.e., local behavior) of each node. A pair of nodes without any interaction can still share similar internal behaviors. For example, in an enterprise information network, compromised computers controlled by the same intruder often demonstrate similar abnormal behaviors even if they do not connect with each other. In this paper, we study the problem of community detection in enterprise information networks, where large-scale internal events and external events coexist on each host. The discovered host communities, capturing behavioral affinity, can benefit many comparative analysis tasks such as host anomaly assessment. In particular, we propose a novel community detection framework to identify behavior-based host communities in enterprise information networks, purely based on large-scale heterogeneous event data. We continue proposing an efficient method for assessing host’s anomaly level by leveraging the detected host communities. Experimental results on enterprise networks demonstrate the effectiveness of our model.

Collaborative Alert Ranking for Anomaly Detection

Given a large number of low-quality heterogeneous categorical alerts collected from an anomaly detection system, how to characterize the complex relationships between different alerts and deliver trustworthy rankings to end users? While existing techniques focus on either mining alert patterns or filtering out false positive alerts, it can be more advantageous to consider the two perspectives simultaneously in order to improve detection accuracy and better understand abnormal system behaviors. In this paper, we propose CAR, a collaborative alert ranking framework that exploits both temporal and content correlations from heterogeneous categorical alerts. CAR first builds a hierarchical Bayesian model to capture both short-term and long-term dependencies in each alert sequence. Then, an entity embedding-based model is proposed to learn the content correlations between alerts via their heterogeneous categorical attributes. Finally, by incorporating both temporal and content dependencies into a unified optimization framework, CAR ranks both alerts and their corresponding alert patterns. Our experiments-using both synthetic and real-world enterprise security alert data-show that CAR can accurately identify true positive alerts and successfully reconstruct the attack scenarios at the same time.

NodeMerge: Template Based Efficient Data Reduction For Big-Data Causality Analysis

Today’s enterprises are exposed to sophisticated attacks, such as Advanced Persistent Threats~(APT) attacks, which usually consist of stealthy multiple steps. To counter these attacks, enterprises often rely on causality analysis on the system activity data collected from a ubiquitous system monitoring to discover the initial penetration point, and from there identify previously unknown attack steps. However, one major challenge for causality analysis is that the ubiquitous system monitoring generates a colossal amount of data and hosting such a huge amount of data is prohibitively expensive. Thus, there is a strong demand for techniques that reduce the storage of data for causality analysis and yet preserve the quality of the causality analysis. To address this problem, in this paper, we propose NodeMerge, a template based data reduction system for online system event storage. Specifically, our approach can directly work on the stream of system dependency data and achieve data reduction on the read-only file events based on their access patterns. It can either reduce the storage cost or improve the performance of causality analysis under the same budget. Only with a reasonable amount of resource for online data reduction, it nearly completely preserves the accuracy for causality analysis. The reduced form of data can be used directly with little overhead. To evaluate our approach, we conducted a set of comprehensive evaluations, which show that for different categories of workloads, our system can reduce the storage capacity of raw system dependency data by as high as 75.7 times, and the storage capacity of the state-of-the-art approach by as high as 32.6 times. Furthermore, the results also demonstrate that our approach keeps all the causality analysis information and has a reasonably small overhead in memory and hard disk.

TINET: Transferring Knowledge between Invariant Networks

The latent behavior of an information system that can exhibit extreme events, such as system faults or cyber-attacks, is complex. Recently, the invariant network has shown to be a powerful way of characterizing complex system behaviors. Structures and evolutions of the invariance network, in particular, the vanishing correlations, can shed light on identifying causal anomalies and performing system diagnosis. However, due to the dynamic and complex nature of real-world information systems, learning a reliable invariant network in a new environment often requires continuous collecting and analyzing the system surveillance data for several weeks or even months. Although the invariant networks learned from old environments have some common entities and entity relationships, these networks cannot be directly borrowed for the new environment due to the domain variety problem. To avoid the prohibitive time and resource consuming network building process, we propose TINET, a knowledge transfer based model for accelerating invariant network construction. In particular, we first propose an entity estimation model to estimate the probability of each source domain entity that can be included in the final invariant network of the target domain. Then, we propose a dependency construction model for constructing the unbiased dependency relationships by solving a two-constraint optimization problem. Extensive experiments on both synthetic and real-world datasets demonstrate the effectiveness and efficiency of TINET. We also apply TINET to a real enterprise security system for intrusion detection. TINET achieves superior detection performance at least 20 days lead-lag time in advance with more than 75% accuracy.

SAQL: A Stream-based Query System for Real-Time Abnormal System Behavior Detection

Recently, advanced cyber attacks, which consist of a sequence of steps that involve many vulnerabilities and hosts, compromise the security of many well-protected businesses. This has led to solutions that ubiquitously monitor system activities in each host (big data) as a series of events and search for anomalies (abnormal behaviors) for triaging risky events. Since fighting against these attacks is a time-critical mission to prevent further damage, these solutions face challenges in incorporating expert knowledge to perform timely anomaly detection over the large-scale provenance data. To address these challenges, we propose a novel stream-based query system that takes as input, a real-time event feed aggregated from multiple hosts in an enterprise, and provides an anomaly query engine that queries the event feed to identify abnormal behaviors based on the specified anomalies. To facilitate the task of expressing anomalies based on expert knowledge, our system provides a domain-specific query language, SAQL, which allows analysts to express models for (1) rule-based anomalies, (2) time-series anomalies, (3) invariant-based anomalies, and (4) outlier-based anomalies. We deployed our system in NEC Labs America, comprising 150 hosts, and evaluated it using 1.1TB of real system monitoring data (containing 3.3 billion events). Our evaluations on a broad set of attack behaviors and micro-benchmarks show that our system has a low detection latency (<2s) and a high system throughput (110,000 events/s; supporting ~4000 hosts), and is more efficient in memory utilization than the existing stream-based complex event processing systems.

AIQL: Enabling Efficient Attack Investigation from System Monitoring Data

The need for countering Advanced Persistent Threat (APT) attacks has led to solutions that ubiquitously monitor system activities in each host and perform timely attack investigation over the monitoring data for analyzing attack provenance. However, existing query systems based on relational databases and graph databases lack language constructs to express key properties of major attack behaviors, and often execute queries inefficiently since their semantics-agnostic design cannot exploit the properties of system monitoring data to speed up query execution.To address this problem, we propose a novel query system built on top of existing monitoring tools and databases, which is designed with novel types of optimizations to support timely attack investigation. Our system provides (1) domain-specific data model and storage for scaling the storage, (2) a domain-specific query language, Attack Investigation Query Language (AIQL) that integrates critical primitives for attack investigation, and (3) an optimized query engine based on the characteristics of the data and the semantics of the queries to efficiently schedule the query execution. We deployed our system in NEC Labs America comprising 150 hosts and evaluated it using 857 GB of real system monitoring data (containing 2.5 billion events). Our evaluations on a real-world APT attack and a broad set of attack behaviors show that our system surpasses existing systems in both efficiency (124x over PostgreSQL, 157x over Neo4j, and 16x over Greenplum) and conciseness (SQL, Neo4j Cypher, and Splunk SPL contain at least 2.4x more constraints than AIQL).