Data Science and System Security

Read our publications from our Data Science & System Security researchers who aim to build novel big-data solutions and service platforms to simplify complex systems management. We develop new information technology that supports innovative applications, from big data analytics to the Internet of Things. Our experimental and theoretical research includes many data science and systems research domains including time series mining, deep learning, NLP and large language models, graph mining, signal processing, and cloud computing.

Posts

Learning Deep Network Representations with Adversarially Regularized Autoencoders

The problem of network representation learning, also known as network embedding, arises in many machine learning tasks assuming that there exist a small number of variabilities in the vertex representations which can capture the “semantics” of the original network structure. Most existing network embedding models, with shallow or deep architectures, learn vertex representations from the sampled vertex sequences such that the low-dimensional embeddings preserve the locality property and/or global reconstruction capability. The resultant representations, however, are difficult for model generalization due to the intrinsic sparsity of sampled sequences from the input network. As such, an ideal approach to address the problem is to generate vertex representations by learning a probability density function over the sampled sequences. However, in many cases, such a distribution in a low-dimensional manifold may not always have an analytic form. In this study, we propose to learn the network representations with adversarially regularized autoencoders (NetRA). NetRA learns smoothly regularized vertex representations that well capture the network structure through jointly considering both locality-preserving and global reconstruction constraints. The joint inference is encapsulated in a generative adversarial training process to circumvent the requirement of an explicit prior distribution, and thus obtains better generalization performance. We demonstrate empirically how well key properties of the network structure are captured and the effectiveness of NetRA on a variety of tasks, including network reconstruction, link prediction, and multi-label classification.

NetWalk: A Flexible Deep Embedding Approach for Anomaly Detection in Dynamic Networks

Massive and dynamic networks arise in many practical applications such as social media, security and public health. Given an evolutionary network, it is crucial to detect structural anomalies, such as vertices and edges whose “behaviors” deviate from underlying majority of the network, in a real-time fashion. Recently, network embedding has proven a powerful tool in learning the low-dimensional representations of vertices in networks that can capture and preserve the network structure. However, most existing network embedding approaches are designed for static networks, and thus may not be perfectly suited for a dynamic environment in which the network representation has to be constantly updated. In this paper, we propose a novel approach, NetWalk, for anomaly detection in dynamic networks by learning network representations which can be updated dynamically as the network evolves. We first encode the vertices of the dynamic network to vector representations by clique embedding, which jointly minimizes the pairwise distance of vertex representations of each walk derived from the dynamic networks, and the deep autoencoder reconstruction error serving as a global regularization. The vector representations can be computed with constant space requirements using reservoir sampling. On the basis of the learned low-dimensional vertex representations, a clustering-based technique is employed to incrementally and dynamically detect network anomalies. Compared with existing approaches, NetWalk has several advantages: 1) the network embedding can be updated dynamically, 2) streaming network nodes and edges can be encoded efficiently with constant memory space usage, 3). flexible to be applied on different types of networks, and 4) network anomalies can be detected in real-time. Extensive experiments on four real datasets demonstrate the effectiveness of NetWalk.

TINET: Transferring Knowledge between Invariant Networks

The latent behavior of an information system that can exhibit extreme events, such as system faults or cyber-attacks, is complex. Recently, the invariant network has shown to be a powerful way of characterizing complex system behaviors. Structures and evolutions of the invariance network, in particular, the vanishing correlations, can shed light on identifying causal anomalies and performing system diagnosis. However, due to the dynamic and complex nature of real-world information systems, learning a reliable invariant network in a new environment often requires continuous collecting and analyzing the system surveillance data for several weeks or even months. Although the invariant networks learned from old environments have some common entities and entity relationships, these networks cannot be directly borrowed for the new environment due to the domain variety problem. To avoid the prohibitive time and resource consuming network building process, we propose TINET, a knowledge transfer based model for accelerating invariant network construction. In particular, we first propose an entity estimation model to estimate the probability of each source domain entity that can be included in the final invariant network of the target domain. Then, we propose a dependency construction model for constructing the unbiased dependency relationships by solving a two-constraint optimization problem. Extensive experiments on both synthetic and real-world datasets demonstrate the effectiveness and efficiency of TINET. We also apply TINET to a real enterprise security system for intrusion detection. TINET achieves superior detection performance at least 20 days lead-lag time in advance with more than 75% accuracy.

SAQL: A Stream-based Query System for Real-Time Abnormal System Behavior Detection

Recently, advanced cyber attacks, which consist of a sequence of steps that involve many vulnerabilities and hosts, compromise the security of many well-protected businesses. This has led to solutions that ubiquitously monitor system activities in each host (big data) as a series of events and search for anomalies (abnormal behaviors) for triaging risky events. Since fighting against these attacks is a time-critical mission to prevent further damage, these solutions face challenges in incorporating expert knowledge to perform timely anomaly detection over the large-scale provenance data. To address these challenges, we propose a novel stream-based query system that takes as input, a real-time event feed aggregated from multiple hosts in an enterprise, and provides an anomaly query engine that queries the event feed to identify abnormal behaviors based on the specified anomalies. To facilitate the task of expressing anomalies based on expert knowledge, our system provides a domain-specific query language, SAQL, which allows analysts to express models for (1) rule-based anomalies, (2) time-series anomalies, (3) invariant-based anomalies, and (4) outlier-based anomalies. We deployed our system in NEC Labs America, comprising 150 hosts, and evaluated it using 1.1TB of real system monitoring data (containing 3.3 billion events). Our evaluations on a broad set of attack behaviors and micro-benchmarks show that our system has a low detection latency (<2s) and a high system throughput (110,000 events/s; supporting ~4000 hosts), and is more efficient in memory utilization than the existing stream-based complex event processing systems.

Exploiting Graph Regularized Multi-dimensional Hawkes Processes for Modeling Events with Spatio-temporal Characteristics

Multi-dimensional Hawkes processes (MHP) has been widely used for modeling temporal events. However, when MHP was used for modeling events with spatio-temporal characteristics, the spatial information was often ignored despite its importance. In this paper, we introduce a framework to exploit MHP for modeling spatio-temporal events by considering both temporal and spatial information. Specifically, we design a graph regularization method to effectively integrate the prior spatial structure into MHP for learning influence matrix between different locations. Indeed, the prior spatial structure can be first represented as a connection graph. Then, a multi-view method is utilized for the alignment of the prior connection graph and influence matrix while preserving the sparsity and low-rank properties of the kernel matrix. Moreover, we develop an optimization scheme using an alternating direction method of multipliers to solve the resulting optimization problem. Finally, the experimental results show that we are able to learn the interaction patterns between different geographical areas more effectively with prior connection graph introduced for regularization.

AIQL: Enabling Efficient Attack Investigation from System Monitoring Data

The need for countering Advanced Persistent Threat (APT) attacks has led to solutions that ubiquitously monitor system activities in each host and perform timely attack investigation over the monitoring data for analyzing attack provenance. However, existing query systems based on relational databases and graph databases lack language constructs to express key properties of major attack behaviors, and often execute queries inefficiently since their semantics-agnostic design cannot exploit the properties of system monitoring data to speed up query execution.To address this problem, we propose a novel query system built on top of existing monitoring tools and databases, which is designed with novel types of optimizations to support timely attack investigation. Our system provides (1) domain-specific data model and storage for scaling the storage, (2) a domain-specific query language, Attack Investigation Query Language (AIQL) that integrates critical primitives for attack investigation, and (3) an optimized query engine based on the characteristics of the data and the semantics of the queries to efficiently schedule the query execution. We deployed our system in NEC Labs America comprising 150 hosts and evaluated it using 857 GB of real system monitoring data (containing 2.5 billion events). Our evaluations on a real-world APT attack and a broad set of attack behaviors show that our system surpasses existing systems in both efficiency (124x over PostgreSQL, 157x over Neo4j, and 16x over Greenplum) and conciseness (SQL, Neo4j Cypher, and Splunk SPL contain at least 2.4x more constraints than AIQL).

LogLens: A Real-time Log Analysis System

Administrators of most user-facing systems depend on periodic log data to get an idea of the health and status of production applications. Logs report information, which is crucial to diagnose the root cause of complex problems. In this paper, we present a real-time log analysis system called LogLens that automates the process of anomaly detection from logs with no (or minimal) target system knowledge and user specification. In LogLens, we employ unsupervised machine learning based techniques to discover patterns in application logs, and then leverage these patterns along with the real-time log parsing for designing advanced log analytics applications. Compared to the existing systems which are primarily limited to log indexing and search capabilities, LogLens presents an extensible system for supporting both stateless and stateful log analysis applications. Currently, LogLens is running at the core of a commercial log analysis solution handling millions of logs generated from the large-scale industrial environments and reported up to 12096x man-hours reduction in troubleshooting operational problems compared to the manual approach.

Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection

Unsupervised anomaly detection on multi- or high-dimensional data is of great importance in both fundamental machine learning research and industrial applications, for which density estimation lies at the core. Although previous approaches based on dimensionality reduction followed by density estimation have made fruitful progress, they mainly suffer from decoupled model learning with inconsistent optimization goals and incapability of preserving essential information in the low-dimensional space. In this paper, we present a Deep Autoencoding Gaussian Mixture Model (DAGMM) for unsupervised anomaly detection. Our model utilizes a deep autoencoder to generate a low-dimensional representation and reconstruction error for each input data point, which is further fed into a Gaussian Mixture Model (GMM). Instead of using decoupled two-stage training and the standard Expectation-Maximization (EM) algorithm, DAGMM jointly optimizes the parameters of the deep autoencoder and the mixture model simultaneously in an end-to-end fashion, leveraging a separate estimation network to facilitate the parameter learning of the mixture model. The joint optimization, which well balances autoencoding reconstruction, density estimation of latent representation, and regularization, helps the autoencoder escape from less attractive local optima and further reduce reconstruction errors, avoiding the need of pre-training. Experimental results on several public benchmark datasets show that, DAGMM significantly outperforms state-of-the-art anomaly detection techniques, and achieves up to 14% improvement based on the standard F1 score.

Co-Regularized Deep Multi-Network Embedding

Network embedding aims to learn a low-dimensional vector representation for each node in the social and information networks, with the constraint to preserve network structures. Most existing methods focus on single network embedding, ignoring the relationship between multiple networks. In many real-world applications, however, multiple networks may contain complementary information, which can lead to further refined node embeddings. Thus, in this paper, we propose a novel multi-network embedding method, DMNE. DMNE is flexible. It allows different networks to have different sizes, to be (un)weighted and (un)directed. It leverages multiple networks via cross-network relationships between nodes in different networks, which may form many-to-many node mappings, and be associated with weights. To model the non-linearity of the network data, we develop DMNE to have a new deep learning architecture, which coordinates multiple neural networks (one for each input network data) with a co-regularized loss function. With multiple layers of non-linear mappings, DMNE progressively transforms each input network to a highly non-linear latent space, and in the meantime, adapts different spaces to each other through a co-regularized learning schema. Extensive experimental results on real-life datasets demonstrate the effectiveness of our method.

Towards a Timely Causality Analysis for Enterprise Security

The increasingly sophisticated Advanced Persistent Threat (APT) attacks have become a serious challenge for enterprise IT security. Attack causality analysis, which tracks multi-hop causal relationships between files and processes to diagnose attack provenances and consequences, is the first step towards understanding APT attacks and taking appropriate responses. Since attack causality analysis is a time-critical mission, it is essential to design causality tracking systems that extract useful attack information in a timely manner. However, prior work is limited in serving this need. Existing approaches have largely focused on pruning causal dependencies totally irrelevant to the attack, but fail to differentiate and prioritize abnormal events from numerous relevant, yet benign and complicated system operations, resulting in long investigation time and slow responses.