Fiber Sensing refers to the use of optical fibers as sensors to measure various physical, chemical, or environmental parameters. Optical fibers, typically made of glass or plastic, are capable of carrying light over long distances with minimal signal loss. When these fibers are engineered or modified for sensing purposes, they can detect changes in specific properties and convert them into measurable signals. Fiber sensing has a wide range of applications across different industries due to its unique advantages, including high sensitivity, immunity to electromagnetic interference, and the ability to operate in harsh or remote environments.

Posts

Field Trial of Coexistence and Simultaneous Switching of Real-Time Fiber Sensing and Coherent 400 GbE in a Dense Urban Environment

Recent advances in optical fiber sensing have enabled telecom network operators to monitor their fiber infrastructure while generating new revenue in various application scenarios, including data center interconnect, public safety, smart cities, and seismic monitoring. However, given the high utilization of fiber networks for data transmission, it is undesirable to allocate dedicated fiber strands solely for sensing purposes. Therefore, it is crucial to ensure the reliable coexistence of fiber sensing and communication signals that co-propagate on the same fiber. In this paper, we conduct field trials in a reconfigurable optical add-drop multiplexer (ROADM) network enabled by the PAWR COSMOS testbed, utilizing metro area fibers in Manhattan, New York City. We verify the coexistence of real-time constant-amplitude distributed acoustic sensing (DAS), coherent 400 GbE, and analog radio-over-fiber (ARoF) signals. Measurement results obtained from the field trial demonstrate that the quality of transmission (QoT) of the coherent 400 GbE signal remains unaffected during co-propagation with DAS and ARoF signals in adjacent dense wavelength-division multiplexing (DWDM) channels. In addition, we present a use case of this coexistence system supporting preemptive DAS-informed optical path switching before link failure.

Fast WDM Provisioning With Minimum Probe Signals: The First Field Experiments For DC Exchanges

There are increasing requirements for data center interconnection (DCI) services, which use fiber to connect any DC distributed in a metro area and quickly establish high-capacity optical paths between cloud services and mobile edge computing and the users. In such networks, coherent transceivers with various optical frequency ranges, modulators, and modulation formats installed at each connection point must be used to meet service requirements such as fast-varying traffic requests between user computing resources. This requires technologyand architectures that enable users and DCI operators to cooperate to achieve fast provisioning of WDM links and flexible route switching in a short time, independent of the transceiver’s implementation and characteristics. We propose an approach to estimate the end-to-end (EtE) generalized signal-to-noise ratio (GSNR) accurately in a short time, not by measuring the GSNR at the operational route and wavelength for the EtE optical path but by simply applying a quality of transmission probe channel link by link, at a wavelength/modulation-formatconvenient for measurement. Assuming connections between transceivers of various frequency ranges, modulators, and modulation formats, we propose a device software architecture in which the DCI operator optimizes the transmission mode between user transceivers with high accuracy using only common parameters such as the bit error rate. In this paper, we first implement software libraries for fast WDM provisioning and experimentally build different routes to verify the accuracy of this approach. For the operational EtE GSNR measurements, theaccuracy estimated from the sum of the measurements for each link was 0.6 dB, and the wavelength-dependent error was about 0.2 dB. Then, using field fibers deployed in the NSF COSMOS testbed, a Linux-based transmission device software architecture, and transceivers with different optical frequency ranges, modulators, andmodulation formats, the fast WDM provisioning of an optical path was completed within 6 min.

First Field Demonstration of Automatic WDM Optical Path Provisioning over Alien Access Links for Data Center Exchange

We demonstrated under six minutes automatic provisioning of optical paths over field- deployed alien access links and WDM carrier links using commercial-grade ROADMs, whitebox mux-ponders, and multi-vendor transceivers. With channel probing, transfer learning, and Gaussian noise model, we achieved an estimation error (Q-factor) below 0.7 dB

Improvement of Resilience of Submarine Networks Based on Fiber Sensing

Simultaneous phase and polarization sensing with span length resolution using the supervisory path is demonstrated. It is shown that by measuring polarization rotation matrix of the return paths, instead of monitoring only the state of polarization, location of the polarization disturbance can be determined even for large polarization rotations. By using the polarization rotation matrices, the phase and polarization disturbances are successfully decoupled. How the existing supervisory system and sensing can coexist in new SDM cables that utilizes pump sharing is discussed.

Field Trial of Coexistence and Simultaneous Switching of Real-time Fiber Sensing and 400GbE Supporting DCI and 5G Mobile Services

Coexistence of real-time constant-amplitude distributed acoustic sensing (DAS) and 400GbE signals is verified by field trial over metro fibers, demonstrating no QoT impact during co-propagation and supporting preemptive DAS-informed optical path switching before link failure

Polarization Sensing Using Polarization Rotation Matrix Eigenvalue Method

Polarization-based, multi-span sensing over a link with reflection-back circuits is demonstrated experimentally. By measuring rotation matrices instead of just monitoring polarization, a 35 dB extinction in localization is achieved regardless of the disturbance magnitude.

Ambient Noise based Weakly Supervised Manhole Localization Methods over Deployed Fiber Networks

We present a manhole localization method based on distributed fiber optic sensing and weakly supervised machine learning techniques. For the first time to our knowledge, ambient environment data is used for underground cable mapping with the promise of enhancing operational efficiency and reducing field work. To effectively accommodate the weak informativeness of ambient data, a selective data sampling scheme and an attention-based deep multiple instance classification model are adopted, which only requires weakly annotated data. The proposed approach is validated on field data collected by a fiber sensing system over multiple existing fiber networks.

Simultaneous Sensing and Communication in Optical Fibers

We explore two fiber sensing methods which enables coexistence with data transmission on DWDM fiber networks. Vibration detection and localization can be achieved by extracting optical phase from modified coherent transponders. Frequency-diverse chirped-pulse DAS with all-Raman amplification can improve SNR and achieves multi-span monitoring.

Detection and Localization of Stationary Weights Hanging on Aerial Telecommunication Fibers using Distributed Acoustic Sensing

For the first time to our knowledge, a stationary weight hanging on an operational aerial telecommunication field fiber was detected and localized using only ambient data collected by a φ-DAS system. Although stationary weights do not create temporally varying signals, and hence cannot be observed directly from the DAS traces, the existence and the location of the additional weights were revealed by the operational modal analysis of the aerial fiber structure.

Bipolar Cyclic Linear Coding for Brillouin Optical Time Domain Analysis

We demonstrate, for the first time, that cyclic linear pulse coding can be bipolar for BOTDA sensors, breaking the unipolar limitation of linear coding techniques and elevating the coding gain for a given code length.