Ming-Fang Huang NEC Labs America

Ming-Fang Huang

Senior Researcher
Optical Networking & Sensing

Posts

First Proof That Geographic Location on Deployed Fiber Cable Can Be Determined by Using OTDR Distance Based on Distributed Fiber Optical Sensing Technology

We demonstrated for the first time that geographic locations on deployed fiber cables can be determined accurately by using OTDR distances. The method involves vibration stimulation near deployed cables and distributed fiber optical sensing technology.

First Field Trial of Distributed Fiber Optical Sensing and High-Speed Communication Over an Operational Telecom Network

To the best of our knowledge, we present the first field trial of distributed fiber optical sensing (DFOS) and high-speed communication, comprising a coexisting system, over an operation telecom network. Using probabilistic-shaped (PS) DP-144QAM, a 36.8 Tb/s with an 8.28-b/s/Hz spectral efficiency (SE) (48-Gbaud channels, 50-GHz channel spacing) was achieved. Employing DFOS technology, road traffic, i.e., vehicle speed and vehicle density, were sensed with 98.5% and 94.5% accuracies, respectively, as compared to video analytics. Additionally, road conditions, i.e., roughness level was sensed with >85% accuracy via a machine learning based classifier.

Wavelength Modulation Spectroscopy Enhanced by Machine Learning for Early Fire Detection

We proposed and demonstrated a new machine learning algorithm for wavelength modulation spectroscopy to enhance the accuracy of fire detection. The result shows more than 8% of accuracy improvement by analyzing CO/CO 2 2f signals.

A Study on Traffic Flow Monitoring Using Optical Fiber Sensor Technology

Traffic conditions of the highway, Ya traffic volume meter CCTV Because it is observed in the spot, such as the discovery of traffic disturbances which deviates from the observation spot it may be delayed. The traffic flow has a problem from the point observations data indirectly order to be estimated, the capture accuracy of trending and regional circumstances change in time series. Therefore, we focused on the optical fiber sensing technology that utilizes the existing light off Aibainfura highway, actually measuring the travel vibration of the vehicle from the infrastructure as a continuous line, overhead grasp the traffic flow from the traveling locus We are working to. This time, tried traffic flow observation and the estimates of the average speed in the Tokyo, Nagoya and New Tomei Expressway. A result, the demonstration zone 45km in a traffic flow observable real time, succeeded in average speed calculation equivalent to the existing traffic meter, this technology has shown promise as a bird’s-eye technique wide and real-time traffic flow.

First Field Trial of Sensing Vehicle Speed, Density, and Road Conditions by Using Fiber Carrying High Speed Data

For the first time, we demonstrate detection of vehicle speed, density, and road conditions using deployed fiber carrying high-speed data transmission, and prove carriers’ large-scale fiber infrastructures can also be used as ubiquitous sensing networks.

Multi-parameter distributed fiber sensing with higherorder optical and acoustic modes

We propose a novel multi-parameter sensing technique based on a Brillouin optical time domain reflectometry in the elliptical-core few-mode fiber, using higher-order optical and acoustic modes. Multiple Brillouin peaks are observed for the backscattering of both the LP01 mode and LP11 mode. We characterize the temperature and strain coefficients for various optical–acoustic mode pairs. By selecting the proper combination of modes pairs, the performance of multi-parameter sensing can be optimized. Distributed sensing of temperature and strain is demonstrated over a 0.5-km elliptical-core few-mode fiber, with the discriminative uncertainty of 0.28°C and 5.81 ?? for temperature and strain, respectively.

Distributed Temperature and Strain Sensing Using Brillouin Optical Time Domain Reflectometry Over a Few Mode Elliptical Core Optical Fiber

We propose a single-ended Brillouin-based sensor in elliptical-core few-mode optical fiber for multi-parameter measurement using spontaneous Brillouin scattering. Distributed sensing of temperature and strain is demonstrated over 0.5 km elliptical-core few-mode fiber.