Optical Networking and Sensing

Our Optical Networking and Sensing department is leading world-class research into the next generation of optical networks and sensing systems that will power ICT-based social solutions for years. From forward-looking theoretical studies to cutting-edge experiments to world- and industry-first technology field trials, we deliver globally recognized innovation that looks into the future and translates it into present reality. Read our optical networking and sensing news and publications from our team of researchers.

Posts

3D Finger Vein Biometric Authentication with Photoacoustic Tomography

Biometric authentication is the recognition of human identity via unique anatomical features. The development of novel methods parallels widespread application by consumer devices, law enforcement, and access control. In particular, methods based on finger veins, as compared to face and fingerprints, obviate privacy concerns and degradation due to wear, age, and obscuration. However, they are two-dimensional (2D) and are fundamentally limited by conventional imaging and tissue-light scattering. In this work, for the first time, to the best of our knowledge, we demonstrate a method of three-dimensional (3D) finger vein biometric authentication based on photoacoustic tomography. Using a compact photoacoustic tomography setup and a novel recognition algorithm, the advantages of 3D are demonstrated via biometric authentication of index finger vessels with false acceptance, false rejection, and equal error rates <1.23%, <9.27%, and <0.13%, respectively, when comparing one finger, a false acceptance rate improvement >10× when comparing multiple fingers, and <0.7% when rotating fingers ±30.

Anti-spoofing Face Recognition Using Infrared Structure Light

We demonstrate an anti-spoofing face recognition system that is able to differentiate real human face with 3D printed materials. Face images captured in infrared structure light are analyzed for surface materials and spatial structure.

Chemical profiling of red wines using surface-1 enhanced Raman spectroscopy (SERS)

In this study, we explored surface-enhanced Raman spectroscopy (SERS) for analyzing red wine through several facile sample preparations. These approaches involved the direct analysis of red wine with Raman spectroscopy and the direct incubation of red wine with silver nanoparticles (i.e., AgNPs) and a reproducible SERS substrate, the AgNP mirror, previously developed by our group. However, as previously reported for red wine analysis, the signals obtained through these approaches were either due to interference of the fluorescence exhibited by pigments or mainly attributed to a DNA fraction, adenine. Therefore, an innovative approach was developed using solvent extraction to provide more characteristic information that is beneficial for wine chemical profiling and discrimination. Signature peaks in the wine extract spectra were found to match those of condensed tannins, resveratrol, anthocyanins, gallic acid, and catechin, which indicated that SERS combined with extraction is an innovative method for profiling wine chemicals and overcoming well-known challenges in red wine analysis. Based on this approach, we have successfully differentiated three red wines and demonstrated the possible relation between the overall intensity of wine spectra and the ratings. Since the wine chemical profile is closely related to the grape species, wine quality, and wine authentication, the SERS approach to obtain rich spectral information from red wine could advance wine chemical analysis.

Demonstration of photonic neural network for fiber nonlinearity compensation in long-haul transmission systems

We demonstrate the experimental implementation of photonic neural network for fiber nonlinearity compensation over a 10,080 km trans-pacific transmission link. Q-factor improvement of 0.51 dB is achieved with only 0.06 dB lower than numerical simulations.

First Proof That Geographic Location on Deployed Fiber Cable Can Be Determined by Using OTDR Distance Based on Distributed Fiber Optical Sensing Technology

We demonstrated for the first time that geographic locations on deployed fiber cables can be determined accurately by using OTDR distances. The method involves vibration stimulation near deployed cables and distributed fiber optical sensing technology.

More Than Communications: Environment Monitoring Using Existing Data Center Network Infrastructure

We propose reusing existing optical cables in metropolitan networks for distributed sensing using a bidirectional, dual-band architecture where communications and sensing signals can coexist with weak interaction on the same optical fiber.

Simultaneous Optical Fiber Sensing and Mobile Front-Haul Access over a Passive Optical Network

We demonstrate a passive optical network (PON) that employs reflective semiconductor optical amplifiers (RSOAs) at optical network units (ONUs) to allow simultaneous data transmission with distributed fiber-optic sensing (DFOS) on individual distribution fibers.

First Field Trial of Distributed Fiber Optical Sensing and High-Speed Communication Over an Operational Telecom Network

To the best of our knowledge, we present the first field trial of distributed fiber optical sensing (DFOS) and high-speed communication, comprising a coexisting system, over an operation telecom network. Using probabilistic-shaped (PS) DP-144QAM, a 36.8 Tb/s with an 8.28-b/s/Hz spectral efficiency (SE) (48-Gbaud channels, 50-GHz channel spacing) was achieved. Employing DFOS technology, road traffic, i.e., vehicle speed and vehicle density, were sensed with 98.5% and 94.5% accuracies, respectively, as compared to video analytics. Additionally, road conditions, i.e., roughness level was sensed with >85% accuracy via a machine learning based classifier.

Wavelength Modulation Spectroscopy Enhanced by Machine Learning for Early Fire Detection

We proposed and demonstrated a new machine learning algorithm for wavelength modulation spectroscopy to enhance the accuracy of fire detection. The result shows more than 8% of accuracy improvement by analyzing CO/CO 2 2f signals.

Model transfer of QoT prediction in optical networks based on artificial neural networks

An artificial neural network (ANN) based transfer learning model is built for quality of transmission (QoT) prediction in optical systems feasible with different modulation formats. Knowledge learned from one optical system can be transferred to a similar optical system by adjusting weights in ANN hidden layers with a few additional training samples, where highly related information from both systems is integrated and redundant information is discarded. Homogeneous and heterogeneous ANN structures are implemented to achieve accurate Q-factor-based QoT prediction with low root-mean-square error. The transfer learning accuracy under different modulation formats, transmission distances, and fiber types is evaluated. Using transfer learning, the number of retraining samples is reduced from 1000 to as low as 20, and the training time is reduced by up to four times.