Takanori Inoue works at NEC Corporation.

Posts

Data-driven Modelling of EDFAs by Neural Networks

Data-driven Modelling of EDFAs by Neural Networks Dependence of EDFA gain shape on input power and input spectrum shape is modelled using a simple neural network-based architecture for amplifiers with different gains and output powers. The model can predict the gain within ±0.1 dB. Even though the model has good success predicting the performance of the particular EDFA it is trained with, it is not as successful when used to predict a different EDFA, or even the same EDFA with a different pump power. However, retraining the model with a small amount of supplementary data from a second EDFA makes the model able to predict the performance of the second EDFA with little loss in performance.

Improvement of resilience of submarine networks based on fiber sensing

Improvement of resilience of submarine networks based on fiber sensing Simultaneous phase and polarization sensing with span length resolution using the supervisory path is demonstrated. It is shown that by measuring polarization rotation matrix of the return paths, instead of monitoring only the state of polarization, location of the polarization disturbance can be determined even for large polarization rotations. By using the polarization rotation matrices, the phase and polarization disturbances are successfully decoupled. How the existing supervisory system and sensing can coexist in new SDM cables that utilizes pump sharing is discussed.

Polarization Sensing Using Polarization Rotation Matrix Eigenvalue Method

Polarization Sensing Using Polarization Rotation Matrix Eigenvalue Method Polarization-based, multi-span sensing over a link with reflection-back circuits is demonstrated experimentally. By measuring rotation matrices instead of just monitoring polarization, a 35 dB extinction in localization is achieved regardless of the disturbance magnitude.

Guided Acoustic Brillouin Scattering Measurements In Optical Communication Fibers

Guided Acoustic Brillouin Scattering Measurements In Optical Communication Fibers Guided acoustic Brillouin (GAWBS) noise is measured using a novel, homodyne measurement technique for four commonly used fibers in long-distance optical transmission systems. The measurements are made with single spans and then shown to be consistent with separate multi-span long-distance measurements. The inverse dependence of the GAWBS noise on the fiber effective area is confirmed by comparing different fibers with the effective area varying between 80 µm2 and 150 µm2. The line broadening effect of the coating is observed, and the correlation between the width of the GAWBS peaks to the acoustic mode profile is confirmed. An extensive model of the GAWBS noise in long-distance fibers is presented, including corrections to some commonly repeated mistakes in previous reports. It is established through the model and verified with the measurements that the depolarized scattering caused by TR2m modes contributes twice as much to the optical noise in the orthogonal polarization to the original source, as it does to the noise in parallel polarization. Using this relationship, the polarized and depolarized contributions to the measured GAWBS noise is separated for the first time. As a result, a direct comparison between the theory and the measured GAWBS noise spectrum is shown for the first time with excellent agreement. It is confirmed that the total GAWBS noise can be calculated from fiber parameters under certain assumptions. It is predicted that the level of depolarized GAWBS noise created by the fiber may depend on the polarization diffusion length, and consequently, possible ways to reduce GAWBS noise are proposed. Using the developed theory, dependence of GAWBS noise on the location of the core is calculated to show that multi-core fibers would have a similar level of GAWBS noise no matter where their cores are positioned.

Estimation of Core-Cladding Concentricity Error From GAWBS Noise Spectrum

Estimation of Core-Cladding Concentricity Error From GAWBS Noise Spectrum CCCE in a 60-km fiber is estimated from its GAWBS noise spectrum by comparing the TR 1m modes with the R 0m modes. The estimated CCCE value 0.73 μm is consistent with conventional measurements of 0.6–0.8 μm.

Field and lab experimental demonstration of nonlinear impairment compensation using neural networks

Field and lab experimental demonstration of nonlinear impairment compensation using neural networks Fiber nonlinearity is one of the major limitations to the achievable capacity in long distance fiber optic transmission systems. Nonlinear impairments are determined by the signal pattern and the transmission system parameters. Deterministic algorithms based on approximating the nonlinear Schrodinger equation through digital back propagation, or a single step approach based on perturbation methods have been demonstrated, however, their implementation demands excessive signal processing resources, and accurate knowledge of the transmission system. A completely different approach uses machine learning algorithms to learn from the received data itself to figure out the nonlinear impairment. In this work, a single-step, system agnostic nonlinearity compensation algorithm based on a neural network is proposed to pre-distort symbols at transmitter side to demonstrate ~0.6?dB Q improvement after 2800?km standard single-mode fiber transmission using 32 Gbaud signal. Without prior knowledge of the transmission system, the neural network tensor weights are constructed from training data thanks to the intra-channel cross-phase modulation and intra-channel four-wave mixing triplets used as input features.

Coupled-Core Fiber Design For Enhancing Nonlinearity Tolerance

Coupled-Core Fiber Design For Enhancing Nonlinearity Tolerance Fiber nonlinearity is a major limitation on the achievable maximum capacity per fiber core. Digital signal processing (DSP) can be used directly to compensate nonlinear impairments, however with limited effectiveness. It is well known that fibers with higher chromatic dispersion (CD) reduce nonlinear impairments, and CD can be taken care of with DSP. Since, maximum CD is limited by material dispersion of the fiber we propose using strongly-coupled multi-core fibers with large group delay (GD) between the cores. Nonlinear mitigation is achieved through strong mode coupling, and group delay between the cores which suppresses four-wave mixing interaction by inducing large phase-mismatch, albeit stochastic in nature. Through simulations we determine the threshold GD required for noticeable nonlinearity suppression depends on the fiber CD. In particular, for dispersion-uncompensated links a large GD of the order of 1ns per 1000km is required to improve optimum Q by 1 dB. Furthermore, beyond this threshold, larger GD results in larger suppression without any signs of saturation.

Fiber Nonlinearity Compensation by Neural Networks

Fiber Nonlinearity Compensation by Neural Networks Neuron network (NN) is proposed to work together with perturbation-based nonlinearity compensation (NLC) algorithm by feeding with intra-channel cross-phase modulation (IXPM) and intra-channel four-wave mixing (IFWM) triplets. Without prior knowledge of the transmission link and signal pulse shaping/baudrate, the optimum NN architecture and its tensor weights are completely constructed from a data-driven approach by exploring the training datasets. After trimming down the unnecessary input tensors based on their weights, its complexity is further reduced by applying the trained NN model at the transmitter side thanks to the limited alphabet size of the modulation formats. The performance advantage of Tx-side NN-NLC is experimentally demonstrated using both single-channel and WDM-channel 32Gbaud dual-polarization 16QAM over 2800km transmission

Spectrally-Efficient 200G Probabilistically-Shaped 16QAM over 9000km Straight Line Transmission with Flexible Multiplexing Scheme

Spectrally-Efficient 200G Probabilistically-Shaped 16QAM over 9000km Straight Line Transmission with Flexible Multiplexing Scheme Flexible wavelength-multiplexing technique in backbone submarine networks has been deployed to accommodate the trend of variable-rate modulation formats. In this paper, we propose a new design of flexible-rate transponders in the scenario of flexible multiplexing scheme to achieve near-Shannon performance. Probabilistic-shaped (PS) M-QAM is capable of adjusting the bit rate at very finer granularity by adapting the entropy of the distribution matcher. Instead of delivering variable bit rates at the fixed baud rate, various baud rates of 200Gb/s PS-16QAM is demonstrated to fit into the flexible grid multiple 3.125GHz bandwidth. This flexible baud rate saves the limited optical bandwidth assigned by the flexible multiplexing scheme to improve bandwidth utilization. The 200G PS-16QAM signals are experimentally demonstrated over 9000km straight-line testbed to achieve 3.05b/s/Hz~5.33 b/s/Hz spectral efficiency (SE) with up to 4dB Q margin. In addition, the high baud rate signals are used for lower SE while low baud rate signals are targeting at high SE transmission to reduce the implementation penalty.

On the Performance Metric and Design of Non-Uniformly Shaped Constellation

On the Performance Metric and Design of Non-Uniformly Shaped Constellation Asymmetric information is shown to be more accurate in characterizing the performance of quadrant folding shaped (QFS) M-QAM. The performance difference of QFS M-QAM schemes strongly depends on the FEC coding rate, and the optimum FEC coding rate is found to be around ?0.8, which is independent of QFS M-QAM and the designed rates.