Radiology is the medical discipline that uses imaging technologies—such as X-rays, CT, MRI, and ultrasound—to diagnose and treat disease. It plays an essential role in detecting structural abnormalities and guiding therapeutic procedures. Advances in digital imaging, AI analysis, and radiomics have improved diagnostic precision. Radiology integrates physics, biology, and computer science to support clinical decision-making. Ongoing research seeks to enhance automation and reduce diagnostic errors.

Posts

EditGRPO: Reinforcement Learning with Post-Rollout Edits for Clinically Accurate Chest X-Ray Report Generation

Radiology report generation requires advanced medical image analysis, effective temporal reasoning, and accurate text generation. Although recent innovations, particularly multimodal large language models (MLLMs), have shown improved performance, their supervised fine-tuning (SFT) objective is not explicitly aligned with clinical efficacy. In this work, we introduce EditGRPO, a mixed-policy reinforcement learning (RL) algorithm designed specifically to optimize the generation through clinically motivated rewards. EditGRPO integrates on-policy exploration with off-policy guidance by injecting sentence-level detailed corrections during training rollouts. This mixed-policy approach addresses the exploration dilemma and sampling efficiency issues typically encountered in RL. Applied to a Qwen2.5-VL-3B MLLM initialized with supervised fine-tuning (SFT), EditGRPO outperforms both SFT and vanilla GRPO baselines, achieving an average improvement of 3.4% in CheXbert, GREEN, Radgraph, and RATEScore metrics across four major chest X-ray report generation datasets. Notably, EditGRPO also demonstrates superior out-of-domain generalization, with an average performance gain of 5.9% on unseen datasets.