Driving Video Analysis is the computational process of interpreting and reasoning about driving scenes captured by dash-cam or onboard vehicle cameras. It involves extracting visual cues such as objects, lanes, movements, and interactions to understand events like maneuvers, traffic violations, or collisions. By organizing these visual elements into structured representations, driving video analysis enables spatial and causal reasoning about how and why events occur on the road. This analysis supports applications in traffic safety, autonomous driving research, and post-incident evaluation by providing interpretable, domain-specific insights from visual data alone.

Posts

iFinder: Structured Zero-Shot Vision-Based LLM Grounding for Dash-Cam Video Reasoning

Grounding large language models (LLMs) in domain-specific tasks like post-hoc dash-cam driving video analysis is challenging due to their general-purpose training and lack of structured inductive biases. As vision is often the sole modality available for such analysis (i.e., no LiDAR, GPS, etc.), existing video-based vision-language models (V-VLMs) struggle with spatial reasoning, causal inference, and explainability of events in the input video. To this end, we introduce iFinder, a structured semantic grounding framework that decouples perception from reasoning by translating dash-cam videos into a hierarchical, interpretable data structure for LLMs. iFinder operates as a modular, training-free pipeline that employs pretrained vision models to extract critical cues — object pose, lane positions, and object trajectories — which are hierarchically organized into frame- and video-level structures. Combined with a three-block prompting strategy, it enables step-wise, grounded reasoning for the LLM to refine a peer V-VLM’s outputs and provide accurate reasoning. Evaluations on four public dash-cam video benchmarks show that iFinder’s proposed grounding with domain-specific cues, especially object orientation and global context, significantly outperforms end-to-end V-VLMs on four zero-shot driving benchmarks, with up to 39% gains in accident reasoning accuracy. By grounding LLMs with driving domain-specific representations, iFinder offers a zero-shot, interpretable, and reliable alternative to end-to-end V-VLMs for post-hoc driving video understanding.