The University of Naples Parthenope, established in 1919 as the “Regio Istituto Superiore Navale,” is a public university in Naples, Italy. Initially focused on maritime studies, it has expanded to include faculties in Economics, Science and Technology, Law, Engineering, and Sports Sciences, committed to promoting knowledge for societal development. NEC Labs America works with the University of Naples Parthenope on machine learning applications in maritime and transportation analytics, enhancing operational safety and predictive planning. Please read about our latest news and collaborative publications with the University of Naples Parthenope.

Posts

XPF: Agentic AI System for Business Workflow Automation

In this paper, we propose a novel agentic AI system called XPF, which enables users to create “agents” using just natural language, where each agent is capable of executing complex, real-world business workflows in an accurate and reliable manner. XPF provides an interface to develop and iterate over the agent creation process and then deploy the agent in production when satisfactory results are produced consistently. The key components of XPF include: (a) planner, which leverages LLM to generate a step-by-step plan, which can further be edited by a human (b) compiler, which leverages LLM to compile the plan into a flow graph (c) executor, which handles distributed execution of the flow graph (using LLM, tools, RAG, etc.) on an underlying cluster and (d) verifier, which helps in verification of the output (through human generated tests or auto-generated tests using LLM). We develop five different agents using XPF and conduct experiments to evaluate one particular aspect i.e. difference in accuracy and reliability of the five agents with “human-generated” vs “auto-generated” plans. Our experiments show that we can get much more accurate and reliable response for a business workflow when step-by-step instructions (in natural language) are given by a human familiar with the workflow, rather than letting the LLM figure out the execution plan steps. In particular, we observe that “human-generated” plan almost always gives 100% accuracy whereas “auto-generated” plan almost never gives 100% accuracy. In terms of reliability, we observe through Rouge-L, Blue and Meteor scores, that the output from “human-generated” plan is much more reliable than “auto-generated” plan.

LLM-based Distributed Code Generation and Cost-Efficient Execution in the Cloud

The advancement of Generative Artificial Intelligence (AI), particularly Large Language Models (LLMs), is reshaping the software industry by automating code generation. Many LLM-driven distributed processing systems rely on serial code generation constrained by predefined libraries, limiting flexibility and adaptability. While some approaches enhance performance through parallel execution or optimize edge-cloud distributed processing for specific domains, they often overlook the cost implications of deployment, restricting scalability and economic feasibility across diverse cloud environments. This paper presents DiCE-C, a system that eliminates these constraints by starting directly from a natural language query. DiCE-C dynamically identifies available tools at runtime, programmatically refines LLM prompts, and employs a stepwise approach—first generating serial code and then transforming it into distributed code. This adaptive methodology enables efficient distributed execution without dependence on specific libraries. By leveraging high-level parallelism at the Application Programming Interface (API) level and managing API execution as services within a Kubernetes-based runtime, DiCE-C reduces idle GPU time and facilitates the use of smaller, cost-effective GPU instances. Experiments with a vision-based insurance application demonstrate that DiCE-C reduces cloud operational costs by up to 72% when using smaller GPUs (A6000 and A4000 GPU machines vs. A100 GPU machine) and by 32% when using identical GPUs (A100 GPU machines). This flexible and cost-efficient approach makes DiCE-C a scalable solution for deploying LLM-generated vision applications in cloud environments.

G-Litter Marine Litter Dataset Augmentation with Diffusion Models and Large Language Models on GPU Acceleration

Marine litter detection is crucial for environmental monitoring, yet the imbalance in existing datasets limits model performance in identifying various types of waste accurately. This paper presents an efficient data augmentation pipeline that combines generative diffusion models (e.g., Stable Diffusion) and Large Language Models (LLMs) to expand the G-Litter dataset, a marine litter dataset designed for autonomous detection in heterogeneous environments. Leveraging scalable diffusion models for image generation and Alpaca LLMs for diverse prompt generation, our approach augments underrepresented classes by generating over 200 additional images per class, significantly improving the dataset’s balance. Training G-Litter augmented dataset using YOLOv8 for object detection demonstrated an increase in detection performance, improving recall by 7.82% and mAP50 by 3.87% (compared with baseline results). This study emphasizes the potential for combining generative AI with HPC resources to automate data augmentation on large-scale, unstructured datasets, particularly in edge computing contexts for real-time marine monitoring. The models were tested on real videos captured during simulated missions, demonstrating a superior ability to detect submerged objects in dynamic scenarios. These results highlight the potential of generative AI techniques to improve dataset quality and detection model performance, laying the foundation for further expansion in real-time marine monitoring.

Citizen Science for the Sea with Information Technologies: An Open Platform for Gathering Marine Data and Marine Litter Detection from Leisure Boat Instruments

Data crowdsourcing is an increasingly pervasive and lifestyle-changing technology due to the flywheel effect that results from the interaction between the Internet of Things and Cloud Computing. This paper presents the Citizen Science for the Sea with Information Technologies (C4Sea-IT) framework. It is an open platform for gathering marine data from leisure boat instruments. C4Sea-IT aims to provide a coastal marine data gathering, moving, processing, exchange, and sharing platform using the existing navigation instruments and sensors for today’s leisure and professional vessels. In this work, a use case for the detection and tracking of marine litter is shown. The final goal is weather/ocean forecasts argumentation with Artificial Intelligence prediction models trained with crowdsourced data.